翻訳と辞書 |
High efficiency glandless circulating pump : ウィキペディア英語版 | High efficiency glandless circulating pump
A high efficiency glandless circulating pump is a component of a heating and air conditioning system that allows the system to perform with increased efficiency while significantly reducing the system's electrical usage. ==Description== It is primarily composed of an electronically commutated synchronous motor (ECM) with a permanent magnet rotor.〔(Rubik M., et al.(2005). Instalacje, gazowe, ogrzewcze, wentylacyjne i wodno-kanalizacyjne w budownictwie. Wydawnictwo Forum Sp. z o.o., Poznań; Chapter 5.14 Rubik M.: Pompy obiegowe w instalacjach c.o. i c.w.u.)(Polish language).〕 The ECM is a motor that converts a direct current (DC) from an electrical source into an alternating current (AC) which is sent to the motor itself, allowing for increased efficiency over standard AC motors. The permanent magnet rotor consists of an iron core, surrounded by multiple magnetic rare earth metals, and finally a metal sleeve that evenly spaces the magnets around the core, which helps to drive the motor. By utilizing multiple small improvements in pump-design technology such as a double pump in parallel system and variable controls, these pumps are able to run at about a 50% to 70% increased efficiency with up to an 80% decrease in electricity consumption over the previous standard design. This pump has recently become the new standard in both commercial and residential buildings across the European Union due to a recent ordinance by the European ErP (Eco-Design) Directive. The ErP directive began enforcing this new standard of regulation of these pumps January 1st, 2013 and will become even stricter on efficiency standards on August 1st, 2015 in order to meet the EU's goal of a 50% total reduction in the pump's energy usage by 2020.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「High efficiency glandless circulating pump」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|